skip to main content


Search for: All records

Creators/Authors contains: "Herman, Gregory S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The use of renewable electricity to prepare materials and fuels from abundant molecules offers a tantalizing opportunity to address concerns over energy and materials sustainability. The oxygen evolution reaction (OER) is integral to nearly all material and fuel electrosyntheses. However, very little is known about the structural evolution of the OER electrocatalyst, especially the amorphous layer that forms from the crystalline structure. Here, we investigate the interfacial transformation of the SrIrO 3 OER electrocatalyst. The SrIrO 3 amorphization is initiated by the lattice oxygen redox, a step that allows Sr 2+ to diffuse and O 2− to reorganize the SrIrO 3 structure. This activation turns SrIrO 3 into a highly disordered Ir octahedral network with Ir square-planar motif. The final Sr y IrO x exhibits a greater degree of disorder than IrO x made from other processing methods. Our results demonstrate that the structural reorganization facilitated by coupled ionic diffusions is essential to the disordered structure of the SrIrO 3 electrocatalyst. 
    more » « less
  2. Abstract

    The light-soaking effect is the observation that under constant illumination the measured power conversion efficiency of certain solar cells changes as a function of time. The theory of the light-soaking in metal halide perovskites is at present incomplete. In this report, we employ steady-state microwave conductivity, a contactless probe of electronic properties of semiconductors, to study the light-soaking effect in metal halide perovskites. By illuminating isolated thin films of two mixed-cation perovskites with AM1.5 solar illumination, we observe a continual increase in photoconductance over a period of many (>12) hours. We can fit the experimentally observed changes in photoconductance to a stretched exponential function, in an analogous manner to bias-stressed thin-film transistors. The information provided in this report should help the community better understand one of the most perplexing open problems in the field of perovskite solar cells and, ultimately, lead to more robust and predictable devices.

     
    more » « less